Summary
- Workers are paid 67% - 45% of MRPL at the turn of 20th century Belgium coal mines
- Descriptive stat: Cartel ⇒ \(P\)↑ ⇒ wage markdown \(\frac{MRPL}{W}\)↑
- Regime change: Employer Association→coal price cartel
- Observe: Wage markdown estimates vs. “collusion” regime change
- Claim: Collusion↑ ⇒ markdown↑
- Literature: Friction, factor market power ⇒ wage markdown
- New: Downstream/employer collusion ⇒ upstream wage markdown
Why the wage markdown matters
- Intrinsic interest: Is labour exploited?
- Analytical interest:
- How big is the welfare (deadweight) loss?
- Markdown↑, markups↑ ⇒ TFP↓, inflation↑1
- Need to look at both ends: An exploited (from steel plants, railways) needs to be an exploiter (coal mine)
- Measurement issue: What does the markup formula give under the upstream and downstream market power?
1 How much is TFP reduced/inflation hightened by the resource misallocation in the economy due to wage markdown, not just price markups?
An extreme case: Monopsonistic-monopolistic profit maximisation (Syverson 2024) \[ \max_{\{X\}} \;\;\; \pi = R\{f(X)\} - W(X)X \]
FOC2 \[ \begin{aligned} R'(Q)f'(X) &= W'(X)X + W(X)\\ &= W(X)\bigg(1+\underbrace{W'(X)\frac{X}{W(X)}}_{=\epsilon^{-1}_{x}}\bigg)\\ &= W(X)\left(1+\varepsilon^{-1}_{x}\right) \end{aligned} \] Markdown \[ \mu^{x}\equiv \frac{MRPX}{W}=\frac{R'(Q)f'(X)}{W(X)}=1+\varepsilon^{-1}_{x} \] So3 4 \[ \begin{aligned} \mu^{x} &= \frac{R'(Q)}{W(X)}\frac{\theta_{x}Q}{X}\\ &= \frac{P\left(1+\eta^{-1}\right)}{W(X)}\frac{\theta_{x}Q}{X}\\ &= \left(1-\left|\eta^{-1}\right|\right)\frac{\theta_{x}}{\alpha^{x}} \end{aligned} \] Note \(\mu^{-1}=1-\left|\eta^{-1}\right|\), so \[ \mu^{x}\mu=\frac{\theta_{x}}{\alpha^{x}} \] The popular markup formula \(\frac{\theta_{x}}{\alpha^{x}}\) gives a product of markdown and markup.
2 \(\varepsilon^{-1}_{x}=\frac{dW}{dX}\frac{X}{W}\) is factor supply elasticity of price \(\varepsilon_{x}\equiv\frac{dX}{dW}\frac{W}{X}\) inverted, or inverse price elasticity of factor suply.
3 1st equality uses \[ \theta_{x}\equiv f'(X)\frac{X}{Q} \] or \[ f'(X)=\theta_{x}\frac{Q}{X} \]
4 2nd equality uses FOC of factor \(X\) from monopolist profit maximisation \(PF(X)-C\{F(X)\}\), denoting \(R'(X)=R'(Q)F'(X)\): \[ \begin{aligned} P'(Q)F'(X)Q+P(Q)F'(X) &= C'(Q)F'(X)\\ &\Leftrightarrow\\ \{\underbrace{P'(Q)Q+P(Q)}_{=R'(Q)}\}F'(X) &= C'(Q)F'(X)\\ &\Leftrightarrow\\ R'(Q)=P(Q)\left(1+P'(Q)\frac{Q}{P}\right) &= MC\\ &\Leftrightarrow\\ P(1+\eta^{-1}) &= MC \end{aligned} \] where \(\eta^{-1}=\frac{dP}{dQ}\frac{Q}{P}\) is demand elasticity of price \(\eta\equiv\frac{dQ}{dP}\frac{P}{Q}\) inverted, or inverse price elasticity of demand, so they say. \[ \mu^{-1}=\frac{MC}{P}=1+\eta^{-1}=1-\left|\eta^{-1}\right| \]
\(\frac{\theta_{x}}{\alpha^{x}}\) gives
- Markup, only when the firm is non-oligopsonistic
- Markdown, only when the firm is non-oligopolistic5
- Overestimation of markup/markdown when markup>1 and markdown>1, if attributing RHS to only one of the two→…De Loecker, Eeckhout, and Unger (2020)?
5 Same problem applies to this paper. It cancels off markup by \(\frac{\theta_{\ell}}{\alpha^{\ell}}/\frac{\theta_{m}}{\alpha^{m}}=\mu^{\ell}\mu/\mu^{m}\mu=\mu^{\ell}\) under the assumption of material market competition \(\mu^{m}=1\). See \(\eqref{eq14}\) in Section 4
Model
Primitives
Cost minimization \[\begin{align} \min_{\left\{L_{ft}, M_{ft}\right\}} \;\;\; & \sum_{g \in F_{i(f)t}} \lambda_{fgt} \left( L_{gt} W^{\ell}_{gt} + M_{gt} W^{m}_{gt} \right)\\ &\hspace{1em} - MC_{ft} \left\{ Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) - Q_{ft} \right\} \tag{4} \end{align}\]
Cobb-Douglas production function6 \[ q_{ft} = \beta_{l} l_{ft} + \beta_{m} m_{ft} + \beta_{k} k_{ft} + \omega_{ft} \tag{1} \]
6 Results also follow with output elasticity + Hicks neutrality \[ Q_{ft} = \Omega_{ft}F(L_{ft}, M_{ft}, K_{ft}). \] Why CD?
7 Justification given in the paper: Input demand is affected by distributions of markdowns and output markups, otherwise one cannot invert. To avoid assumptions on the markdown and markup distributions, we use AR(1).
TFP AR(1): Blundell and Bond way7 \[ \omega_{ft} = \rho \omega_{ft-1} + u_{ft} \tag{2} \]
Labor supply8 \[ W^{\ell}_{it} = L_{it}^{\Psi^{l}} \nu_{it} \tag{3} \]
8 Estimated using demand shocks as IVs: 1987 coal demand shock, cartel membership
FOC of labour \[ \begin{alignat}{3} MC_{ft}\frac{\partial Q_{ft}}{\partial L_{ft}} &= W^{\ell}_{ft} &&+ \frac{\partial W^{\ell}_{ft}}{\partial L_{ft}} L_{ft} &&+\sum_{g\neq f}\lambda_{fgt} \frac{\partial W^{\ell}_{gt}}{\partial L_{ft}}L_{gt}\\ &\Leftrightarrow &&\\ \frac{P_{ft}}{\mu_{ft}}\frac{\partial Q_{ft}}{\partial L_{ft}} &= W^{\ell}_{ft} &&+\frac{W^{\ell}_{ft}}{1}\underbrace{\frac{\partial W^{\ell}_{ft}}{\partial L_{ft}}\frac{L_{ft}}{W^{\ell}_{ft}}}_{=\psi^{\ell}_{ft}} &&+ W^{\ell}_{ft}\sum_{g\neq f}\lambda_{fgt} \underbrace{\frac{\partial W^{\ell}_{gt}}{\partial L_{ft}}\frac{L_{ft}}{W^{\ell}_{gt}}}_{=\psi^{\ell}_{fgt}}\frac{W^{\ell}_{gt}}{L_{ft}}\frac{L_{gt}}{W^{\ell}_{ft}} \end{alignat} \]
Imposing profit maximisation: marginal revenue = marginal cost:
\[ \frac{\partial R_{ft}}{\partial Q_{ft}} = \frac{\partial C_{ft}}{\partial Q_{ft}} = \frac{P_{ft}}{\frac{P_{ft}}{\frac{\partial C_{ft}}{\partial Q_{ft}}}} = \frac{P_{ft}}{\mu_{ft}} \]
Then, MRPL is \[ MRPL_{ft} \equiv \frac{\partial R_{ft}}{\partial Q_{ft}}\frac{\partial Q_{ft}}{\partial L_{ft}} = \frac{P_{ft}}{\mu_{ft}}\frac{\partial Q_{ft}}{\partial L_{ft}} \]
So9
9 Can derive a similar expression under collusion \(\mu^{x}\mu=\frac{\theta_{x}}{\alpha^{x}}\) as in Syverson (2022) by redefining elasticities \(\varepsilon_{\ell}, \eta\).
Markup from variable material inputs10 \[ \mu_{ft} = \frac{\beta_{m}}{\alpha^{m}_{ft}} \tag{13} \]
10 Competitive cost minimization \(W^{m}M-\lambda[Q(M)\geqslant \bar{Q}]\) FOC gives \[ W^{m}= \lambda Q'(M)=MCQ'(M) \] \[\begin{align} \frac{W^{m}}{MC}\frac{PM}{PQ} &= Q'(M)\frac{M}{Q}\\ \frac{W^{m}M}{PQ}\frac{P}{MC} &= \theta_{m}\\ \alpha^{m}\mu &= \theta_{m}\\ \mu &= \frac{\theta_{m}}{\alpha^{m}} \end{align}\]
No collusion \(\lambda_{fgt}=0\)
\[\begin{align} \min_{\left\{L_{ft}, M_{ft}\right\}} \;\;\; & L_{ft} W^{\ell}_{it} + M_{ft} W^{m}_{it}\\ &\hspace{1em} - MC_{ft} \left\{ Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) - Q_{ft} \right\} \tag{5} \end{align}\]
FOC \[\begin{align} W^{\ell}_{it} + \frac{\partial W^{\ell}_{it}}{\partial L_{it}} L_{ft} &= \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{6}\\ \end{align}\] Rewrite \(L_{ft}=s^{\ell}_{ft}L_{it}\) \[\begin{align} MRPL_{ft} &= s^{\ell}_{ft} \frac{\partial W^{\ell}_{it}}{\partial L_{it}}\frac{L_{it}}{W^{\ell}_{it}}W^{\ell}_{it} + W^{\ell}_{it} \\ &= W^{\ell}_{it}\left(1+s^{\ell}_{ft}\psi^{\ell}_{ft}\right) \end{align}\]
Markdown 11 \[ \underline{\mu}^{\ell}_{ft} = 1 + s^{\ell}_{ft} \Psi^{\ell} \tag{7} \]
- Markdown is greater for larger firms
Perfect collusion \(\lambda_{fgt}=1\)
\[\begin{align} \min_{\left\{L_{ft}, M_{ft}\right\}} \;\;\; & \sum_{g \in F_{i(f)t}} \left( L_{gt} W^{\ell}_{gt} + M_{gt} W^{m}_{gt} \right)\\ &\hspace{1em} - MC_{ft} \left\{ Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) - Q_{ft} \right\} \tag{8} \end{align}\]
FOC \[ W^{\ell}_{it} + \frac{\partial W^{\ell}_{it}}{\partial L_{it}}L_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{9} \]
Markdown \[ \overline{\mu}^{\ell}_{ft} = 1 + \Psi^{\ell} \tag{10} \]
- Markdown is uniform across firms
Intermediate case \(\lambda_{fgt}\in (0,1)\)
Introduce conduct parameter \(\widetilde{\lambda}_{ft}\) by rewriting FOC to nest no collusion \(\widetilde{\lambda}_{ft}=s_{ft}\) and collusion \(\widetilde{\lambda}_{ft}=1\) (so \(\widetilde{\lambda}_{ft}\in[s_{ft}, 1]\)): \[\begin{equation} W^{\ell}_{it} + \widetilde{\lambda}_{ft} \frac{\partial W^{\ell}_{it}}{\partial L_{it}} L_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{11} \label{eq11} \end{equation}\]
Markdown \[ \mu^{\ell}_{ft} = 1 + \widetilde{\lambda}_{ft} \Psi^{\ell} \tag{12} \]
- Markdown is heterogenous across firms
Redefine conduct parameter \(\widehat{\lambda}_{ft}\in[0, 1]\)12 \[ \widehat{\lambda}_{ft} = \frac{\mu^{\ell}_{ft} - \underline{\mu}^{\ell}_{ft}}{\overline{\mu}^{\ell}_{ft} - \underline{\mu}^{\ell}_{ft}} \tag{15} \]
12 \[ \widehat{\lambda}_{ft} = \left\{ \begin{array}{cc} 0\\ 1 \end{array} \right. \quad \mbox{if} \quad \mu^{\ell}_{ft}= \left\{ \begin{array}{c} \underline{\mu}^{\ell}_{ft}\\ \bar{\mu}^{\ell}_{ft} \end{array} \right. \]
Identification of collusion
Markup from labour = markup from materials
\[\begin{align} \frac{\beta_{\ell}}{\alpha^{\ell}_{ft} \cdot (1 + \tilde{\lambda}_{ft} \cdot \Psi^{\ell})} &= \frac{\beta_m}{\alpha^m_{ft}}\\ &\Leftrightarrow \\ \underbrace{1 + \widetilde{\lambda}_{ft} \Psi^{\ell}}_{=\mu^{\ell}_{ft}} &= \frac{\beta_{\ell} \alpha^{m}_{ft}}{\beta_{m} \alpha^{\ell}_{ft}} \tag{14} \label{eq14} \end{align}\]
- LHS sans \(\widetilde{\lambda}_{ft}\) is observed from wage elasticity \(\Psi^{\ell}\)
- RHS is observed from CD production function \(\beta_{\ell}, \beta_{m}\)
- \(\Psi^{\ell} + \beta_{\ell}, \beta_{m}\) ⇒ \(\widetilde{\lambda}_{ft}\)
- In general, Mertens (2022) showed:13
13 This is exactly the same result as Syverson (2024). If both markets are oligopsonistic, expenditure shares and elasticities give a ratio of markdowns \(\frac{\mu^{\ell}}{\mu^{M}}\), which is not an interesting object…
\[ \left. \begin{array}{rrr} \mbox{Expenditure shares $\alpha_{x}$, materials and labour}\\ \mbox{Output elasticities $\theta^{x}$, materials and labour}\\ \mbox{Material market is non-oligopsonistic}\\ \mbox{Profit maximisation} \end{array} \right\} \; \mbox{gives} \; \mbox{wage markdown} \]
- Adding a factor supply elasticity gives factor market collusion index.
15 The challenge is in estimating revenue elasticity \(\theta^{L}_{R,it}\). Treuren (2022) assumes the inverse output demand to be multiplicably separable in quantity and shocks to use Olley-Pakes inversion.
14 \[ \begin{aligned} \gamma^L_{it} &= \frac{MRPL_{it}}{W_{it}}\\ &= \frac{\partial R_{it}}{\partial L_{it}}\frac{1}{W_{it}}\\ &= \frac{\partial R_{it}}{\partial L_{it}}\frac{L_{it}}{R_{it}}\frac{R_{it}}{W_{it}L_{it}}\\ &= \frac{\theta^{L}_{R,it}}{\alpha^{R}_{L}} \end{aligned} \]
- Can test \(\widetilde{\lambda}_{ft}=1, s_{ft}\) or just heterogenous within market \(i\)
- Not an equilibrium condition, so comparative statics is not tenable16
16 Need to model output response to exogenous wage or coal price shocks. Wage↓ ⇒ \(\alpha^{\ell}_{ft}\)↓, \(\Psi^{\ell}\)↓ ⇒ \(\mu^{\ell}_{ft}\)↑, \(\widetilde{\lambda}_{ft}\)↑, but \(Q\) (hence \(P\)) also changes. Also want to know \(P_{ft}\)↑ ⇒ \(\alpha^{\ell}_{ft}\)↓, \(\alpha^{m}_{ft}\)↓ with \(\frac{\alpha^{m}_{ft}}{\alpha^{\ell}_{ft}}\) unchanged ⇒ \(\mu^{\ell}_{ft}\) and \(\widetilde{\lambda}_{ft}\) unchanged, but this is wrong…MRPL must increase so must \(\mu^{\ell}_{ft}\). Possible: \(P_{ft}\)↑ ⇒ \(Q_{ft}\)↑ ⇒ \(\Psi^{\ell}\)↑ ⇒ \(\mu^{\ell}_{ft}\)↑.
17 Taking the derivative with respect to labor on \(Q_{ft} = e^{\beta_l l_{ft} + \beta_m m_{ft} + \beta_k k_{ft} + \omega_{ft}}\) gives \[\frac{\partial Q_{ft}}{\partial L_{ft}} = \frac{\partial Q_{ft}}{\partial l_{ft}} \cdot \frac{\partial l_{ft}}{\partial L_{ft}} = \beta_l \cdot Q_{ft} \cdot \frac{1}{L_{ft}} = \beta_l \frac{Q_{ft}}{L_{ft}}\]
18 From equation (3): \(W^l_{it} = L_{it}^{\Psi^l} \eta_{it}\), taking the derivative: \[\frac{\partial W^l_{it}}{\partial L_{it}} = \Psi^l L_{it}^{\Psi^l - 1} \eta_{it} = \Psi^l \frac{W^l_{it}}{L_{it}}\]
To get LHS of \(\eqref{eq14}\), rearrange FOC in \(\eqref{eq11}\).17 18
\[\begin{alignat}{2} W^l_{it} &+ \tilde{\lambda}_{ft} & \frac{\partial W^l_{it}}{\partial L_{it}} L_{it} &= \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}}\\ &&&\Leftrightarrow\\ W^{\ell}_{it} &+ \tilde{\lambda}_{ft} & \Psi^{\ell} W^{\ell}_{it} &= \beta_{\ell} \frac{P_{ft} Q_{ft}}{\mu_{ft} L_{ft}}\\ &&&\Leftrightarrow\\ W^{\ell}_{it}L_{ft} &+ \tilde{\lambda}_{ft} &\Psi^{\ell} W^{\ell}_{it}L_{ft} &= \beta_{\ell} \frac{P_{ft} Q_{ft}}{\mu_{ft}} \end{alignat}\]
Markup19 \[\begin{alignat}{2} \mu_{ft} &= \frac{\beta_{\ell} P_{ft} Q_{ft}}{W^{\ell}_{it} L_{ft} (1 + \tilde{\lambda}_{ft} \Psi^{\ell})}\\ &= \frac{\beta_{\ell}}{\alpha^{\ell}_{ft} (1 + \tilde{\lambda}_{ft} \Psi^{\ell})} \end{alignat}\]
19 Using revenue share of labor: \(W^{\ell}_{ft} L_{ft} = \alpha^{\ell}_{ft} P_{ft} Q_{ft}\)
Estimation
Moment conditions for production function (IVs: standard set + lagged regional wage) \[ E[u_{ft} | (l_{fr-1}, m_{fr-1}, k_{fr}, w^{agri}_{r-1})_{r \in \{2,...,t\}}] = 0 \tag{16} \] GMM moment conditions for production function estimation \[\begin{align} E[ &q_{ft} - \rho q_{ft-1} - \beta_{0}(1-\rho) - \beta_{l}(l_{ft} - \rho l_{ft-1})\\ &- \beta_{m}(m_{ft} - \rho m_{ft-1}) - \beta_{k}(k_{ft} - \rho k_{ft-1}) |\\ & l_{ft-1}, m_{ft-1}, k_{ft}, k_{ft-1}, w^{agri}_{t-1}] = 0 \tag{17} \end{align}\]
Data
- Administration des Mines (annual reports on mines)
- Employer Association membership
- monthly Bulletin of the Union des Charbonnages, Mines et Usines Métallurgiques de la Province de Liège
- Association Charbonnière et l’Industrie Houillière des Bassins de Charleroi et de la Basse-Sambre
- Cartel membership (De Leener data)
- Other: Opening dates of railroad and tramway stations, agricultural wages
Research design
- \(\mu^{\ell}_{ft}\) using the production approach under material market competition
- Uses financial statement data from historical records when cartel was legal
- Only after using material FOC, we identify \(\mu^{\ell}_{ft}\) and collusion index \(\widehat{\lambda}_{ft}\)
- Under oligopsony, \(\mu^{\ell}_{ft} \in[\underline{\mu}^{\ell}_{ft}, \bar{\mu}^{\ell}_{ft}]\), depending on the extent of collusion
- The difference from lower- and upper-bound = degree of collusion
- Hypothesis: Degree of collusion vs. collusion regimes: collusion↑ (cartel) ⇒ markdown↑20 21
20 The paper lacks a theoretical analysis of exogenous price increase when we are talking about the coal price cartel. The price increase could have been due to exogenous shocks/shifts. What happens to \(\mu^{\ell}_{ft}\) and implied \(\widehat{\lambda}_{ft}\) when the price increase exogenously? I.e., when the market conduct remains the same in the degree of collusion, does a coal price increase leave the estimated \(\mu^{\ell}_{ft}\) unchanged?
21 %\(P\)↑ \(\simeq\) %\(\mu^{\ell}\)↑, roughly 35% on eyeballs, early 1900’s. A possible exogenous impact: Price↑exogenously ⇒ \(\frac{MRPL_{ft}\uparrow}{W^{\ell}_{ft}}=\mu^{\ell}_{ft}\)↑ A possible endogenous response: \(P_{ft}\)↑ ⇒ \(Q_{ft}\)↑ ⇒ \(\Psi^{\ell}\)↑ ⇒ \(\mu^{\ell}_{ft}\)↑. The former does not aggravate misallocation, but the latter does.
Results
22 I can see: %\(P\)↑ \(\simeq\) %\(\mu^{\ell}\)↑, roughly 35% on eyeballs, early 1900’s. Firms did not pass coal price windfall to wages. Why did not they have to? Collusive oligopsony.
24 No mention on these features.
23 “Given that the noncollusive markdown does not grow after 1900, the vast increase in markdowns after the introduction of the coal cartel appears to have been entirely driven by wage collusion.”
25 Size sensitivity of \(\mu^{\ell}=1+s\Psi^{\ell}\) can be due to tech change, not necessarily to collusion.
26 \(\frac{\pi_{\ell}}{P}=\frac{MR_{\ell}}{W}\frac{W}{P}-\frac{MC_{\ell}}{P}\), or \(\mu^{\mathrm{tot}}=\frac{W}{P}\mu^{\ell}-\frac{1}{\mu}\)…?
感想
- Rubensは研究材料の幅が広い: 中国たばこ農家のデータを使って下流の企業統合がmarkdownに与えた影響を推計、ベルギーの古文書をデジタル化して共謀とmarkdownの関係を推計…IO専門家?
- 価格カルテルが合法だったときの古いデータを使うことで、素のカルテル効果を鮮明に示しているのは素晴らしい
- 下流の市場慣行→上流の市場慣行、しかも、下流の寡占買い手が鉱山労働者から得たレントを吸い上げている可能性を示す
- wage markdown=oligopsonyの識別そのものは目新しくないが、Cournot仮定下で共謀度の識別という付加価値がある
- 雇用者協会よりも価格カルテルの方が共謀の程度が強いと当然のように書いているが、なぜ?
- wage markdownはproduction approachが適用の範囲の広さで群を抜いているが、Hicks neutralityとmaterial market competition以外あまりに制約をかけないので、推計精度が低い(技術の同質的な大標本が必要)かも