Delabastita and Rubens 2025

Author

claude 4 sonnet, instructed by me

Published

June 23, 2025, 02:06 +0000

Equations and Variable Definitions from Coal Mining Study

Main Equations

Equation (1) - Cobb-Douglas Production Function

\[ q_{ft} = \beta_{l} l_{ft} + \beta_{m} m_{ft} + \beta_{k} k_{ft} + \omega_{ft} \tag{1} \]

Equation (2) - TFP Transition Process

\[ \omega_{ft} = \rho \omega_{ft-1} + u_{ft} \tag{2} \]

Labor Supply Function - Equation (3)

\[ W^{l}_{it} = L_{it}^{\Psi^{l}} \eta_{it} \tag{3} \]

Cost Minimization Objective - Equation (4)

\[ \min_{L_{ft}, M_{ft}} \left\{ \sum_{g \in F_{i(f)t}} \left( \lambda_{fgt} (L_{gt} W^{l}_{gt} + M_{gt} W^{m}_{gt}) \right) - MC_{ft} \left( Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) - Q_{ft} \right) \right\} \tag{4} \]

No Collusion Cost Minimization - Equation (5)

\[ \min_{L_{ft}, M_{ft}} \left( L_{ft} W^{l}_{ft} + M_{ft} W^{m}_{ft} \right) - MC_{ft} \left( Q_{ft} - Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) \right) \tag{5} \]

First-Order Condition for Labor (No Collusion) - Equation (6)

\[ L_{ft} \frac{\partial W^{l}_{it}}{\partial L_{it}} + W^{l}_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{6} \]

Markdown Under No Collusion - Equation (7)

\[ \widetilde{m}^{l}_{ft} = 1 + s^{l}_{ft} \Psi^{l} \tag{7} \]

Perfect Collusion Cost Minimization - Equation (8)

\[ \min_{L_{ft}, M_{ft}} \left\{ \sum_{g \in F_{i(f)t}} \left( L_{gt} W^{l}_{gt} + M_{gt} W^{m}_{gt} \right) - MC_{ft} \left( Q_{ft} - Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta) \right) \right\} \tag{8} \]

First-Order Condition for Labor (Perfect Collusion) - Equation (9)

\[ L_{it} \frac{\partial W^{l}_{it}}{\partial L_{it}} + W^{l}_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{9} \]

Markdown Under Perfect Collusion - Equation (10)

\[ \overline{m}^{l}_{ft} = 1 + \Psi^{l} \tag{10} \]

General First-Order Condition - Equation (11)

\[ W^{l}_{it} + \widetilde{\lambda}_{ft} \frac{\partial W^{l}_{it}}{\partial L_{it}} L_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} \tag{11} \]

General Markdown Expression - Equation (12)

\[ m^{l}_{ft} = 1 + \widetilde{\lambda}_{ft} \Psi^{l} \tag{12} \]

Markup from Materials - Equation (13)

\[ \mu_{ft} = \frac{\beta_{m}}{\alpha^{m}_{ft}} \tag{13} \]

Core Identification Equation - Equation (14)

\[ m^{l}_{ft} = 1 + \widetilde{\lambda}_{ft} \Psi^{l} = \frac{\beta_{l} \alpha^{m}_{ft}}{\beta_{m} \alpha^{l}_{ft}} \tag{14} \]

Conduct Parameter Definition - Equation (15)

\[ \widehat{\lambda}_{ft} = \frac{m^{l}_{ft} - \widetilde{m}^{l}_{ft}}{\overline{m}^{l}_{ft} - \widetilde{m}^{l}_{ft}} \tag{15} \]

Moment Conditions for Production Function - Equation (16)

\[ E[u_{ft} | (l_{fr-1}, m_{fr-1}, k_{fr}, w^{agri}_{r-1})_{r \in \{2,...,t\}}] = 0 \tag{16} \]

GMM Moment Conditions - Equation (17)

\[ E[q_{ft} - \rho q_{ft-1} - \beta_{0}(1-\rho) - \beta_{l}(l_{ft} - \rho l_{ft-1}) - \beta_{m}(m_{ft} - \rho m_{ft-1}) - \beta_{k}(k_{ft} - \rho k_{ft-1}) | (l_{ft-1}, m_{ft-1}, k_{ft}, k_{ft-1}, w^{agri}_{t-1})] = 0 \tag{17} \]

Additional Key Definitions

Markdown Definition

\[ m^{l}_{ft} \equiv \frac{MRPL_{ft}}{W^{l}_{ft}} \]

Percentage Markdown Definition

\[ d^{l}_{ft} \equiv \frac{MRPL_{ft} - W^{l}_{ft}}{MRPL_{ft}} = \frac{m^{l}_{ft} - 1}{m^{l}_{ft}} \]

Markup Definition

\[ \mu_{ft} \equiv \frac{P_{ft}}{MC_{ft}} \]

Labor Market Share

\[ s^{l}_{ft} \equiv \frac{L_{ft}}{L_{it}} \]

Revenue Share of Labor

\[ \alpha^{l}_{ft} \equiv \frac{W^{l}_{ft} L_{ft}}{P_{ft} Q_{ft}} \]

Revenue Share of Materials

\[ \alpha^{m}_{ft} \equiv \frac{W^{m}_{ft} M_{ft}}{P_{ft} Q_{ft}} \]

Inverse Labor Supply Elasticity (Firm-level)

\[ \theta^{l}_{ft} \equiv \frac{\partial W^{l}_{ft}}{\partial L_{ft}} \frac{L_{ft}}{W^{l}_{ft}} \]

Inverse Materials Supply Elasticity (Firm-level)

\[ \theta^{m}_{ft} \equiv \frac{\partial W^{m}_{ft}}{\partial M_{ft}} \frac{M_{ft}}{W^{m}_{ft}} \]

Variable Definitions

Variable Definition
\(Q_{ft}\) Output (tonnage of coal) extracted by firm \(f\) in year \(t\)
\(L_{ft}\) Amount of effective labor throughout the year for firm \(f\) in year \(t\)
\(M_{ft}\) Amount of intermediate inputs purchased by firm \(f\) in year \(t\)
\(K_{ft}\) Capital stock (steam engines) used by firm \(f\) in year \(t\)
\(q_{ft}\) Logarithm of output \(Q_{ft}\)
\(l_{ft}\) Logarithm of labor \(L_{ft}\)
\(m_{ft}\) Logarithm of materials \(M_{ft}\)
\(k_{ft}\) Logarithm of capital \(K_{ft}\)
\(\beta_{l}\) Output elasticity of labor
\(\beta_{m}\) Output elasticity of materials
\(\beta_{k}\) Output elasticity of capital
\(\omega_{ft}\) Log total factor productivity
\(u_{ft}\) Unexpected productivity shock
\(\rho\) Serial correlation parameter in productivity process
\(W^{l}_{it}\) Wage in labor market \(i\) in year \(t\)
\(W^{l}_{ft}\) Wage for firm \(f\) in year \(t\)
\(W^{m}_{ft}\) Price of materials for firm \(f\) in year \(t\)
\(L_{it}\) Market-level employment in market \(i\) in year \(t\)
\(\Psi^{l}\) Inverse market-level labor supply elasticity
\(\eta_{it}\) Market-specific residual in labor supply
\(\lambda_{fgt}\) Collusion weight that firm \(f\) puts on firm \(g\)’s costs
\(\widetilde{\lambda}_{ft}\) Conduct parameter (firm-level aggregate of bilateral conduct parameters)
\(\widehat{\lambda}_{ft}\) Normalized conduct parameter ranging from 0 to 1
\(MC_{ft}\) Marginal cost for firm \(f\) in year \(t\)
\(P_{ft}\) Coal price for firm \(f\) in year \(t\)
\(MRPL_{ft}\) Marginal revenue product of labor for firm \(f\) in year \(t\)
\(m^{l}_{ft}\) Wage markdown (ratio of MRPL to wage)
\(\widetilde{m}^{l}_{ft}\) Wage markdown under no collusion
\(\overline{m}^{l}_{ft}\) Wage markdown under perfect collusion
\(d^{l}_{ft}\) Percentage wage markdown
\(\mu_{ft}\) Price markup (ratio of price to marginal cost)
\(s^{l}_{ft}\) Labor market share of firm \(f\)
\(\alpha^{l}_{ft}\) Revenue share of labor for firm \(f\) in year \(t\)
\(\alpha^{m}_{ft}\) Revenue share of materials for firm \(f\) in year \(t\)
\(\theta^{l}_{ft}\) Inverse firm-level labor supply elasticity
\(\theta^{m}_{ft}\) Inverse firm-level materials supply elasticity
\(F_{i(f)t}\) Set of firms in market \(i\) (where firm \(f\) operates) in year \(t\)
\(w^{agri}_{t-1}\) Agricultural wages in Belgium in year \(t-1\) (instrument)

Tab-Separated Variable Definitions

Variable    Definition
Q_ft    Output (tonnage of coal) extracted by firm f in year t
L_ft    Amount of effective labor throughout the year for firm f in year t
M_ft    Amount of intermediate inputs purchased by firm f in year t
K_ft    Capital stock (steam engines) used by firm f in year t
q_ft    Logarithm of output Q_ft
l_ft    Logarithm of labor L_ft
m_ft    Logarithm of materials M_ft
k_ft    Logarithm of capital K_ft
beta_l  Output elasticity of labor
beta_m  Output elasticity of materials
beta_k  Output elasticity of capital
omega_ft    Log total factor productivity
u_ft    Unexpected productivity shock
rho Serial correlation parameter in productivity process
W_l_it  Wage in labor market i in year t
W_l_ft  Wage for firm f in year t
W_m_ft  Price of materials for firm f in year t
L_it    Market-level employment in market i in year t
Psi_l   Inverse market-level labor supply elasticity
eta_it  Market-specific residual in labor supply
lambda_fgt  Collusion weight that firm f puts on firm g's costs
lambda_tilde_ft Conduct parameter (firm-level aggregate of bilateral conduct parameters)
lambda_hat_ft   Normalized conduct parameter ranging from 0 to 1
MC_ft   Marginal cost for firm f in year t
P_ft    Coal price for firm f in year t
MRPL_ft Marginal revenue product of labor for firm f in year t
m_l_ft  Wage markdown (ratio of MRPL to wage)
m_l_tilde_ft    Wage markdown under no collusion
m_l_bar_ft  Wage markdown under perfect collusion
d_l_ft  Percentage wage markdown
mu_ft   Price markup (ratio of price to marginal cost)
s_l_ft  Labor market share of firm f
alpha_l_ft  Revenue share of labor for firm f in year t
alpha_m_ft  Revenue share of materials for firm f in year t
theta_l_ft  Inverse firm-level labor supply elasticity
theta_m_ft  Inverse firm-level materials supply elasticity
F_i_f_t Set of firms in market i (where firm f operates) in year t
w_agri_t_minus_1    Agricultural wages in Belgium in year t-1 (instrument)

Table 1

Table 1: TABLE 1: Model Estimates
TABLE 1: Model Estimates
log(Output) log(Output) log(Output)
A. Production Function, log(Output)
log(Labor) bl .794 .699 .661
(.034) (.327) (.041)
log(Materials) bm .275 .222 .237
(.028) (.138) (.080)
log(Capital) bk 2.008 .153 .102
(.140) (.075) (.088)
Serial correlation TFP r .866 .853
(.198) (.157)
Method OLS GMM GMM
RTS Free Free Fixed at 1.05
R2 .941 .938 .826
Hansen J-test 2.34 2.72
Hansen J-test p-value .126 .255
Number of firms 166 159 159
Observations 4,480 4,005 4,005
B. Markdowns and Markups
Median markdown 1.541 1.680 1.486
(.193) (.450) (.330)
Average markdown 1.676 1.828 1.616
(.224) (.491) (.361)
Median markup .884 .714 .763
(.112) (.494) (.287)
Average markup .946 .764 .816
(.120) (.535) (.315)
Method OLS GMM GMM
RTS Free Free Fixed at 1.05
C. Labor Supply
log(Wage) log(Wage)
Est. SE Est. SE
log(Employment) .066 .006 1.009 .265
Method OLS IV
First-stage F-statistic 462
Hansen J-test 5.92
Hansen J-test p-value .014
Observations 1,990 1,990
Firm-level elasticity 155.56 10.172

Note.—Panels A and B are estimated at the firm-year level, and panel C is estimated at the market-year level. Standard errors (SEs) in panels A and B are block-bootstrapped with 200 iterations. Standard errors in panel C are estimated using the Driscoll and Kraay (1998) correction to allow for both cross-sectional (i.e., intratemporal) and intertemporal dependence, using the STATA command ivreg2,draay(2).

Derivation of (14)

Looking at equation (14) and the context provided, I can explain how the wage markdown is derived by combining the two markup estimates from the production approach.

Cost minimization

From the cost minimization problem, the first-order condition for labor (equation 11) is: \[W^l_{it} + \tilde{\lambda}_{ft} \cdot \frac{\partial W^l_{it}}{\partial L_{it}} \cdot L_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \cdot \frac{P_{ft}}{\mu_{ft}}\]

Where the right side is the marginal revenue product of labor (MRPL).

Rearranging and using: - \(\beta_l\) = output elasticity of labor - \(\alpha^l_{ft} = \frac{W^l_{ft} \cdot L_{ft}}{P_{ft} \cdot Q_{ft}}\) = revenue share of labor

The markup derived from the labor first-order condition becomes: \[\mu_{ft} = \frac{\beta_l}{\alpha^l_{ft} \cdot (1 + \tilde{\lambda}_{ft} \cdot \Psi^l)}\]

From (11)

\[W^l_{it} + \tilde{\lambda}_{ft} \frac{\partial W^l_{it}}{\partial L_{it}} L_{it} = \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}}\]

From the Cobb-Douglas production function: \(Q_{ft} = e^{\beta_l l_{ft} + \beta_m m_{ft} + \beta_k k_{ft} + \omega_{ft}}\)

Taking the derivative with respect to labor: \[\frac{\partial Q_{ft}}{\partial L_{ft}} = \frac{\partial Q_{ft}}{\partial l_{ft}} \cdot \frac{\partial l_{ft}}{\partial L_{ft}} = \beta_l \cdot Q_{ft} \cdot \frac{1}{L_{ft}} = \beta_l \frac{Q_{ft}}{L_{ft}}\]

Substitute this into the RHS of equation (11) \[\frac{\partial Q_{ft}}{\partial L_{ft}} \frac{P_{ft}}{\mu_{ft}} = \beta_l \frac{Q_{ft}}{L_{ft}} \frac{P_{ft}}{\mu_{ft}} = \beta_l \frac{P_{ft} Q_{ft}}{\mu_{ft} L_{ft}}\]

Multiply both sides by \(L_{ft}\) \[L_{ft} W^l_{it} + \tilde{\lambda}_{ft} \frac{\partial W^l_{it}}{\partial L_{it}} L_{it}^2 = \beta_l \frac{P_{ft} Q_{ft}}{\mu_{ft}}\]

From equation (3): \(W^l_{it} = L_{it}^{\Psi^l} \eta_{it}\)

Taking the derivative: \[\frac{\partial W^l_{it}}{\partial L_{it}} = \Psi^l L_{it}^{\Psi^l - 1} \eta_{it} = \Psi^l \frac{W^l_{it}}{L_{it}}\]

Substitute this back to the above \[L_{ft} W^l_{it} + \tilde{\lambda}_{ft} \Psi^l \frac{W^l_{it}}{L_{it}} L_{it}^2 = \beta_l \frac{P_{ft} Q_{ft}}{\mu_{ft}}\]

\[L_{ft} W^l_{it} + \tilde{\lambda}_{ft} \Psi^l W^l_{it} L_{it} = \beta_l \frac{P_{ft} Q_{ft}}{\mu_{ft}}\]

\[W^l_{it} L_{ft} (1 + \tilde{\lambda}_{ft} \Psi^l) = \beta_l \frac{P_{ft} Q_{ft}}{\mu_{ft}}\]

Markup \[\mu_{ft} = \frac{\beta_l P_{ft} Q_{ft}}{W^l_{it} L_{ft} (1 + \tilde{\lambda}_{ft} \Psi^l)}\]

Define the revenue share of labor: \(\alpha^l_{ft} = \frac{W^l_{ft} L_{ft}}{P_{ft} Q_{ft}}\), therefore: \(W^l_{ft} L_{ft} = \alpha^l_{ft} P_{ft} Q_{ft}\)

\[\mu_{ft} = \frac{\beta_l P_{ft} Q_{ft}}{\alpha^l_{ft} P_{ft} Q_{ft} (1 + \tilde{\lambda}_{ft} \Psi^l)} = \frac{\beta_l}{\alpha^l_{ft} (1 + \tilde{\lambda}_{ft} \Psi^l)}\]

This gives us the markup expression derived from the labor first-order condition, which incorporates the wage markdown term \((1 + \tilde{\lambda}_{ft} \Psi^l)\) in the denominator.

Markup from materials (following De Loecker & Warzynski 2012)

For materials, since firms are price-takers (competitive input market), the standard markup formula applies: \[\mu_{ft} = \frac{\beta_m}{\alpha^m_{ft}}\]

Where \(\alpha^m_{ft}\) is the revenue share of materials.

From the cost minimization problem, the first-order condition for materials is: \[W^m_{ft} = \frac{\partial Q_{ft}}{\partial M_{ft}} \frac{P_{ft}}{\mu_{ft}}\]

From the Cobb-Douglas production function: \(Q_{ft} = e^{\beta_l l_{ft} + \beta_m m_{ft} + \beta_k k_{ft} + \omega_{ft}}\)

Taking the derivative with respect to materials: \[\frac{\partial Q_{ft}}{\partial M_{ft}} = \frac{\partial Q_{ft}}{\partial m_{ft}} \cdot \frac{\partial m_{ft}}{\partial M_{ft}} = \beta_m \cdot Q_{ft} \cdot \frac{1}{M_{ft}} = \beta_m \frac{Q_{ft}}{M_{ft}}\]

Substitute this into the RHS

\[W^m_{ft} = \beta_m \frac{Q_{ft}}{M_{ft}} \frac{P_{ft}}{\mu_{ft}} = \beta_m \frac{P_{ft} Q_{ft}}{\mu_{ft} M_{ft}}\]

\[W^m_{ft} M_{ft} = \beta_m \frac{P_{ft} Q_{ft}}{\mu_{ft}}\]

Solve for the markup \[\mu_{ft} = \frac{\beta_m P_{ft} Q_{ft}}{W^m_{ft} M_{ft}}\]

Define the revenue share of materials: \(\alpha^m_{ft} = \frac{W^m_{ft} M_{ft}}{P_{ft} Q_{ft}}\)

Therefore: \(W^m_{ft} M_{ft} = \alpha^m_{ft} P_{ft} Q_{ft}\)

\[\mu_{ft} = \frac{\beta_m P_{ft} Q_{ft}}{\alpha^m_{ft} P_{ft} Q_{ft}} = \frac{\beta_m}{\alpha^m_{ft}}\]

This gives us the standard De Loecker & Warzynski (2012) markup formula: \[\mu_{ft} = \frac{\beta_m}{\alpha^m_{ft}}\]

Equate the two markup expressions

Since both expressions equal \(\mu_{ft}\): \[\frac{\beta_l}{\alpha^l_{ft} \cdot (1 + \tilde{\lambda}_{ft} \cdot \Psi^l)} = \frac{\beta_m}{\alpha^m_{ft}}\]

Rearranging: \[1 + \tilde{\lambda}_{ft} \cdot \Psi^l = \frac{\beta_l \cdot \alpha^m_{ft}}{\beta_m \cdot \alpha^l_{ft}}\]

From equation (12), we know that: \[m^l_{ft} = 1 + \tilde{\lambda}_{ft} \cdot \Psi^l\]

Therefore: \[m^l_{ft} = \frac{\beta_l \cdot \alpha^m_{ft}}{\beta_m \cdot \alpha^l_{ft}}\]

This is equation (14) in the paper.

The wage markdown \(m^l_{ft}\) can be calculated in two equivalent ways:

  1. Labor supply approach: \(1 + \tilde{\lambda}_{ft} \cdot \Psi^l\) (depends on conduct parameter and labor supply elasticity)
  2. Production approach: \(\frac{\beta_l \cdot \alpha^m_{ft}}{\beta_m \cdot \alpha^l_{ft}}\) (depends only on production function parameters and cost shares)